UTS

Universal Time Sharing

INTRODUCTION

BPM -- the base for UTS

Why UTS

1

3

Elements of UTS

Components of the UTS Monitor

Building UTS from BPM

UTS Schedule

2 BPM -- THE BASE FOR UTS

Modern, General Purpose Batch Processing Monitor

Real Time Services concurrent with Batch

Concurrent Symbiont-Cooperative Peripheral I/O

New and Expanded BPM Services

WHY UTS ?

Success of experimental systems

Success of commercial systems

Need for Batch Processing plus on-line

Efficiency:

Of CPU use by multiprogramming

Of personnel by fast turn-around

Of problem solving by on-line interaction

ELEMENTS OF UTS

Hardware Configuration

Shared Processors

UTM and related processors

Documentation

Coordination with other departments

6

7

HARDWARE CONFIGURATION

SHARED PROCESSORS

SDS FORTRAN -- batch and on-line compatable
META SYMBOL -- batch and on-line compatable
BASIC -- batch and on-line interactive
FDP -- on-line interactive

on-line conversational

DOCUMENTATION

Functional Specs

User Manual

SDS MATH

Implementation Specifications

Technical Manuals

8 COMPONENTS OF THE UTS MONITOR

Shared Processors
New Monitor Elements
Changes to BPM
Debugging Tools
Hardware Problem Defenses

9 UTM SHARED PROCESSORS

TEL Terminal Executive Language

DELTA Interactive Machine Language Debugger

EDIT Context Editor for Text Files

PCL Peripheral Interchange and Transformation LINK Program Leader supplying Symbol Tables

10 NEW MONITOR ELEMENTS

Console I/O Routines Memory Management Executive Scheduler Swap Storage Manager Performance Display System Management

11 CHANGES TO BPM

Scheduler Communications Virtual-Physical Address Translation Interrupt and Trap Handlers

Accounting

12 DEBUGGING TOOLS

Executive DELTA
Event Count, Time, Mark
I/O Activity Recorder
Instruction Trace

13 HARDWARE PROBLEM DEFENSES

Error and Failure Reporting

Failure Recovery

Software Consistency Checks

Dynamic hardware reconfiguration

On-line diagnostics

14 BUILDING UTS FROM BPM

Base BPM System

Advantages for UTM development

Steps in UTM development

15 BASE BPM SYSTEM

BPM version B00

Symbiont

16K resident real-time area

Executive DELTA resident and "in control"

Resident monitor symbol table

16 BASE SYSTEM ADVANTAGES

BPM maintained and used continuously

UTM developed in RT area using RT services

Swapping and Scheduling algorithms are tested

System "efficiency" is measured

Early QA availability of partial systems

17a STEPS IN UTM DEVELOPMENT

Load "prototype" system into RT area

Execution scheduling, mapping, console I/O, DELTA

TRAP control, BREAK control, breakpoints

Clock controlled time slicing, batch background

User I/O, EDITOR, PCL

Swapping and memory management

17b

STEPS IN UTM DEVELOPMENT (cont'd)

Log on, log off, processor calls

LINK loaded programs with symbol tables

Shared Processors

System Management displays and controls

SYSGEN - SYSMAK

18a

UTS SCHEDULE

Assumptions

Status of UTM Elements

UTM Benchmarks

Pert Chart

18b

UTS Project August

Completion

12 programmers (full and part time)

9 man years of programmer time

11 months elapsed time

15,000 lines of code (new and changed)

1000 hours of machine time

18c

Assumptions

25 - 100 lines of code/programmer/week

1 - 4 hours machine time/100 lines of code

Typical project time breakdown:

Design

40%

Coding

10%

Debugging

10%

Integration

30%

Documentation 10%

STATUS OF UTM ELEMENTS

19

10/5/68 - Percent Complete

	Design	Coding	Stand Alone Check	System Integration
Exec DELTA	100	90	98	98
User DELTA	100	90	70	50
COC routines	75	50	50	20
EDIT	100	90	90	0
PCL	100	80	80	0
LINK	90	50	30	0
TEL	60	10	2	0
Memory Manage	90	20	2	2
Execution Scheduler	90	70	70	60
Swap Manage	80	5	0	0
Swap Scheduler	80	5	0	0
Traps & Interrupts	80	20	20	10
System Integration	80	0	0	0

20 UTM BENCHMARKS

Prototype DELTA, COC, simple scheduling & mapping	Oct 68
User I/O; Log on, Log off; processor calls	Nov 68
Processors PCL, EDITOR, TEL	Dec 68
Simple program loading - LINK	Jan 69
Swapping and advanced memory management	Feb 69
System integration	April 69
Misc Processor integration, System Mgmt, System Recovery	July 69

21 PERT CHART

Oct 68 Nov 68 Dec 68 Jan 69 Feb 69

April 69 July 6

22 UTM IMPLEMENTATION SELECTED DETAILS

UTM Implementation Details .

Proto-type physical core layout

UTM Virtual memory layout

Scheduler operation - states and state transitions

RAD layout for swapping

23 PROTOTYPE UTS PHYSICAL CORE

25 SCHEDULER STATES AND TRANSITIONS

Execution Selection

INT - interruptions

IR – terminal input ready

TUB - terminal output unblock

IOC - file I/O complete

COM - compute bound

BAT - batch

Out Swap Selection

TI - terminal inputting

TOB - terminal output block

BAT_ - batch

COM - compute bound

27

UTS SYSTEM RESPONSE

UTS System Response

Characteristics of users and programs

RAD utilization

CPU utilization

Response times under various loads

28a

USAGE PROFILE

On-line users:

75% Typing commands

15% Terminal output bound

10% Compute bound

20 seconds between commands

5 char/sec/terminal total I/O rate

3 file I/O requests/terminal command

50 ms compute time per interactive command

4 K average user program size

28b

Terminal Time:

50% Editor

30% Basic

10% FDP

5% DELTA

5% Other - compile, assemble, execute

28c	USAGE PROFILE (cont'd)	
	Execution Time:	
	5% Editor 10% Basic 10% FDP 5% DELTA 70% Other	
		•
29	RAD LOADS	
·		RAD transfers/sec
	Card and Printer Symbiont	3. 8
•	Batch File I/O	2.0
	Terminal File I/O (30 Users)	4.5
	Swaps for Interactive Users	3.0
•	Swaps for Time Slicing	6.7
	Monitor File Activity	5.5
. •		25.5
	7232 load 95% 7212 load 51%	
30	CPU LOADS	
30	CIO LONDO	% of Sigma 7
•	Card and Printer Symbiont	5
	Memory Interference	5
	Swap I/O Management	
·	File I/O Management	17
	Terminal I/O (30 Users)	1 1
	Interactive Service (30 Users)	8
		37%

Remaining for computation 63%

2	7
J	1

TERMINAL RESPONSE TIME

Case	1	2	3	4
Users User size	30 4K	30 12K	60 12K	60 4K
CPU Load (RT + ouhd) RAD Load	.29 .54	.29 .62	.32 .79	.78 .71
Interactive Load	. 07	.07	.15	.15
Average delay (ms.)	149	188	241	540

32

DIFFERENCES FROM BTM

Differences from BTM

Uses Map

Multiple Users in Core

Schedules on I/O

Real-Time Available

Shared Processors